bootmode

 Uses bootstrap to evaluate the likely number of real peaks (i.e. modes)
 in the distribution of a single set of data.

 -- Function File: H = bootmode (X, M)
 -- Function File: H = bootmode (X, M, NBOOT)
 -- Function File: H = bootmode (X, M, NBOOT, KERNEL)
 -- Function File: H = bootmode (X, M, NBOOT, KERNEL, NPROC)
 -- Function File: [H, P] = bootmode (X, M, ...)
 -- Function File: [H, P, CRITVAL] = bootmode (X, M, ...)

     'H = bootmode (X, M)' tests whether the distribution underlying the 
     univariate data in vector X has M modes. The method employs the
     smooth bootstrap as described [1]. The parsimonious approach is to
     iteratively call this function, each time incrementally increasing
     the number of modes until the null hypothesis (H0) is accepted (i.e.
     H=0), where H0 corresponds to the number of modes being equal to M. 
        - If H = 0, H0 cannot be rejected at the 5% significance level.
        - If H = 1, H0 can be rejected at the 5% significance level.

     'H = bootmode (X, M, NBOOT)' sets the number of bootstrap replicates

     'H = bootmode (X, M, NBOOT, KERNEL)' sets the kernel for kernel
     density estimation. Possible values are:
        o 'Gaussian' (default)
        o 'Epanechnikov'

     'H = bootmode (X, M, NBOOT, KERNEL, NPROC)' sets the number of parallel
      processes to use to accelerate computations. This feature requires the
      Parallel package (in Octave), or the Parallel Computing Toolbox (in
      Matlab).

     '[H, P] = bootmode (X, M, ...)' also returns the two-tailed p-value of
      the bootstrap hypothesis test.

     '[H, P, CRITVAL] = bootmode (X, M, ...)' also returns the critical
     bandwidth (i.e.the smallest bandwidth achievable to obtain a kernel
     density estimate with M modes)

  Bibliography:
  [1] Efron and Tibshirani. Chapter 16 Hypothesis testing with the
       bootstrap in An introduction to the bootstrap (CRC Press, 1994)

  bootmode (version 2023.05.02)
  Author: Andrew Charles Penn
  https://www.researchgate.net/profile/Andrew_Penn/

  Copyright 2019 Andrew Charles Penn
  This program is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program.  If not, see http://www.gnu.org/licenses/

Demonstration 1

The following code


 % Stamp data example used in reference [1] in bootstrap R package
 x=[0.060;0.064;0.064;0.065;0.066;0.068;0.069;0.069;0.069;0.069;0.069; ...
    0.069;0.069;0.070;0.070;0.070;0.070;0.070;0.070;0.070;0.070;0.070; ...
    0.070;0.070;0.070;0.070;0.070;0.070;0.070;0.070;0.070;0.070;0.070; ...
    0.070;0.070;0.070;0.070;0.070;0.070;0.071;0.071;0.071;0.071;0.071; ...
    0.071;0.071;0.071;0.071;0.071;0.071;0.071;0.071;0.071;0.071;0.071; ...
    0.071;0.071;0.071;0.071;0.072;0.072;0.072;0.072;0.072;0.072;0.072; ...
    0.072;0.072;0.072;0.072;0.072;0.072;0.072;0.072;0.072;0.072;0.072; ...
    0.072;0.072;0.072;0.072;0.072;0.072;0.072;0.072;0.072;0.072;0.072; ...
    0.072;0.072;0.072;0.073;0.073;0.073;0.073;0.073;0.073;0.073;0.073; ...
    0.073;0.073;0.073;0.074;0.074;0.074;0.074;0.074;0.074;0.074;0.074; ...
    0.074;0.074;0.075;0.075;0.075;0.075;0.075;0.075;0.075;0.075;0.075; ...
    0.075;0.075;0.075;0.075;0.075;0.075;0.075;0.075;0.075;0.075;0.075; ...
    0.076;0.076;0.076;0.076;0.076;0.076;0.076;0.076;0.076;0.076;0.076; ...
    0.076;0.076;0.076;0.076;0.076;0.076;0.076;0.077;0.077;0.077;0.077; ...
    0.077;0.077;0.077;0.077;0.077;0.077;0.077;0.078;0.078;0.078;0.078; ...
    0.078;0.078;0.078;0.078;0.078;0.078;0.078;0.078;0.078;0.078;0.078; ...
    0.078;0.078;0.078;0.078;0.078;0.078;0.078;0.078;0.079;0.079;0.079; ...
    0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079; ...
    0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079; ...
    0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079;0.079; ...
    0.079;0.079;0.079;0.079;0.079;0.079;0.080;0.080;0.080;0.080;0.080; ...
    0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080; ...
    0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080; ...
    0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.080;0.081; ...
    0.081;0.081;0.081;0.081;0.081;0.081;0.081;0.081;0.081;0.081;0.081; ...
    0.081;0.081;0.081;0.082;0.082;0.082;0.082;0.082;0.082;0.082;0.082; ...
    0.082;0.082;0.082;0.082;0.082;0.082;0.082;0.082;0.082;0.082;0.083; ...
    0.083;0.083;0.083;0.083;0.083;0.083;0.084;0.084;0.084;0.085;0.085; ...
    0.086;0.086;0.087;0.088;0.088;0.089;0.089;0.089;0.089;0.089;0.089; ...
    0.089;0.089;0.089;0.089;0.090;0.090;0.090;0.090;0.090;0.090;0.090; ...
    0.090;0.090;0.091;0.091;0.091;0.092;0.092;0.092;0.092;0.092;0.093; ...
    0.093;0.093;0.093;0.093;0.093;0.094;0.094;0.094;0.095;0.095;0.096; ...
    0.096;0.096;0.097;0.097;0.097;0.097;0.097;0.097;0.097;0.098;0.098; ...
    0.098;0.098;0.098;0.099;0.099;0.099;0.099;0.099;0.100;0.100;0.100; ...
    0.100;0.100;0.100;0.100;0.100;0.100;0.100;0.100;0.100;0.100;0.100; ...
    0.100;0.101;0.101;0.101;0.101;0.101;0.101;0.101;0.101;0.101;0.102; ...
    0.102;0.102;0.102;0.102;0.102;0.102;0.102;0.103;0.103;0.103;0.103; ...
    0.103;0.103;0.103;0.104;0.104;0.105;0.105;0.105;0.105;0.105;0.106; ...
    0.106;0.106;0.106;0.107;0.107;0.107;0.108;0.108;0.108;0.108;0.108; ...
    0.108;0.108;0.109;0.109;0.109;0.109;0.109;0.109;0.109;0.110;0.110; ...
    0.110;0.110;0.110;0.110;0.110;0.110;0.110;0.110;0.110;0.111;0.111; ...
    0.111;0.111;0.112;0.112;0.112;0.112;0.112;0.114;0.114;0.114;0.115; ...
    0.115;0.115;0.117;0.119;0.119;0.119;0.119;0.120;0.120;0.120;0.121; ...
    0.122;0.122;0.123;0.123;0.125;0.125;0.128; 0.129;0.129;0.129;0.130;0.131];
 
 [H1, P1, CRITVAL1] = bootmode (x,1,2000);

 % Repeat function call systematically increasing the number of modes (M) by 
 % 1, until the null hypothesis is accepted (i.e. H0 = 0)

 [H2, P2, CRITVAL2] = bootmode (x,2,2000);
 
 sprintf ('Summary of results:\n') 
 sprintf (cat (2, 'H1 is %u with p = %.3g so reject the null hypothesis', ...
                  'that there is 1 mode\n'), H1, P1)
 sprintf (cat (2, 'H2 is %u with p = %.3g so accept the null hypothesis', ...
                  ' that there are 2 modes\n'), H2, P2)
 
 % Please be patient, these calculations take a while...

Produces the following output

ans = Summary of results:

ans = H1 is 1 with p = 0.0005 so reject the null hypothesisthat there is 1 mode

ans = H2 is 0 with p = 0.306 so accept the null hypothesis that there are 2 modes

Package: statistics-resampling