dare
Solve discrete-time algebraic Riccati equation (ARE).
Inputs
Real matrix (n-by-n).
Real matrix (n-by-m).
Real matrix (n-by-n).
Real matrix (m-by-m).
Optional real matrix (n-by-m). If s is not specified, a zero matrix is assumed.
Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is assumed.
Outputs
Unique stabilizing solution of the discrete-time Riccati equation (n-by-n).
Closed-loop poles (n-by-1).
Corresponding gain matrix (m-by-n).
Equations
-1 A'XA - X - A'XB (B'XB + R) B'XA + Q = 0 -1 A'XA - X - (A'XB + S) (B'XB + R) (B'XA + S') + Q = 0 -1 G = (B'XB + R) B'XA -1 G = (B'XB + R) (B'XA + S') L = eig (A - B*G) |
-1 A'XA - E'XE - A'XB (B'XB + R) B'XA + Q = 0 -1 A'XA - E'XE - (A'XB + S) (B'XB + R) (B'XA + S') + Q = 0 -1 G = (B'XB + R) B'XA -1 G = (B'XB + R) (B'XA + S') L = eig (A - B*G, E) |
Algorithm
Uses SLICOT SB02OD and SG02AD,
Copyright (c) 2020, SLICOT, available under the BSD 3-Clause
(License and Disclaimer).
See also: care, lqr, dlqr, kalman
Source Code: dare