bisafit
Estimate mean and confidence intervals for the Birnbaum-Saunders distribution.
muhat = bisafit (x)
returns the maximum likelihood
estimates of the parameters of the Birnbaum-Saunders distribution given the
data in x. paramhat(1)
is the scale parameter,
beta, and paramhat(2)
is the shape parameter,
gamma.
[paramhat, paramci] = bisafit (x)
returns the 95%
confidence intervals for the parameter estimates.
[…] = bisafit (x, alpha)
also returns the
100 * (1 - alpha)
percent confidence intervals for the
parameter estimates. By default, the optional argument alpha is
0.05 corresponding to 95% confidence intervals. Pass in []
for
alpha to use the default values.
[…] = bisafit (x, alpha, censor)
accepts a
boolean vector, censor, of the same size as x with 1
s for
observations that are right-censored and 0
s for observations that are
observed exactly. By default, or if left empty,
censor = zeros (size (x))
.
[…] = bisafit (x, alpha, censor, freq)
accepts a frequency vector, freq, of the same size as x.
freq typically contains integer frequencies for the corresponding
elements in x, but it can contain any non-integer non-negative values.
By default, or if left empty, freq = ones (size (x))
.
[…] = bisafit (…, options)
specifies control
parameters for the iterative algorithm used to compute ML estimates with the
fminsearch
function. options is a structure with the following
fields and their default values:
options.Display = "off"
options.MaxFunEvals = 400
options.MaxIter = 200
options.TolX = 1e-6
Further information about the Birnbaum-Saunders distribution can be found at https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution
See also: bisacdf, bisainv, bisapdf, bisarnd, bisalike, bisastat
Source Code: bisafit
## Sample 3 populations from different Birnbaum-Saunders distibutions rand ("seed", 5); # for reproducibility r1 = bisarnd (1, 0.5, 2000, 1); rand ("seed", 2); # for reproducibility r2 = bisarnd (2, 0.3, 2000, 1); rand ("seed", 7); # for reproducibility r3 = bisarnd (4, 0.5, 2000, 1); r = [r1, r2, r3]; ## Plot them normalized and fix their colors hist (r, 80, 4.2); h = findobj (gca, "Type", "patch"); set (h(1), "facecolor", "c"); set (h(2), "facecolor", "g"); set (h(3), "facecolor", "r"); ylim ([0, 1.1]); xlim ([0, 8]); hold on ## Estimate their α and β parameters beta_gammaA = bisafit (r(:,1)); beta_gammaB = bisafit (r(:,2)); beta_gammaC = bisafit (r(:,3)); ## Plot their estimated PDFs x = [0:0.1:8]; y = bisapdf (x, beta_gammaA(1), beta_gammaA(2)); plot (x, y, "-pr"); y = bisapdf (x, beta_gammaB(1), beta_gammaB(2)); plot (x, y, "-sg"); y = bisapdf (x, beta_gammaC(1), beta_gammaC(2)); plot (x, y, "-^c"); hold off legend ({"Normalized HIST of sample 1 with β=1 and γ=0.5", ... "Normalized HIST of sample 2 with β=2 and γ=0.3", ... "Normalized HIST of sample 3 with β=4 and γ=0.5", ... sprintf("PDF for sample 1 with estimated β=%0.2f and γ=%0.2f", ... beta_gammaA(1), beta_gammaA(2)), ... sprintf("PDF for sample 2 with estimated β=%0.2f and γ=%0.2f", ... beta_gammaB(1), beta_gammaB(2)), ... sprintf("PDF for sample 3 with estimated β=%0.2f and γ=%0.2f", ... beta_gammaC(1), beta_gammaC(2))}) title ("Three population samples from different Birnbaum-Saunders distibutions") hold off |